The ‘wcd ° Manual

Version $Id: wed.texi,v 0.4.5.1 2008/03/20 13:22:58 scott Exp scott $

Scott Hazelhurst
Copyright (©) 2007, University of the Witwatersrand, Johannesburg

Table of Contents

1 Description...............cciiiiiiii... 1
1.1 Clusteringo 1
1.2 Distance functions. i 2
1.2.1 The D2 distance function................. 2
1.2.1.1 General formulation 2
1.2.1.2 WINdows .. .oo e 3
1.2.1.3 References...... ... 3
1.2.2 Edit distance 3
2 Imstallingwecd........oovviiinn... 5
2.1 Getting new versions of wed 5
2.2 Changes from versions 0.3.X.........oviiiiiiiiiiinn .. 5
2.3 Installing the distribution............ 5
24 Compiling 5)
2.4.1 Method 1: using configure)
2411 MPIVersion..........cooiiiiiiiniii.. 6
2.4.1.2 Pthreads ... 6
2.4.2 Method 2: Manually using make 6
2.4.2.1 Trouble shooting 6
2.4.3 EMBOSS ... 8
2.4.4 Auxiliary programsiiiii 8
2.5 Documentation............ ... 8
3 Runningwed...................i.... 9
3.1 SUMMATY . oot 9
3.2 Examples — A Quick Introduction towed.................... 10
3.2.1 Basic Clustering ...t 10
3.2.2 More advanced clustering................. 11
3.2.2.1 Using a clustering file.............................. 11
3.2.2.2 Using a constraint file 11
3.2.2.3 An example of reclustering and constraint files. 12

3.2.3 Merging and adding.............. i 13

3.3 Help oo 14
3.4 Identifying a sequence, 14
3.5 Comparing two SEqUENCESo vttt ettt 14
3.6 Doing clustering.oo i 15

3.6.1 Arguments............ . 15

3.6.2 Optionst 16

3.6.3 Clustering based upon suffix arrays 18

3.7 Clustering a range.ouuuunee e 18
3.8 Refining clusters 19

3.8.1 Merging clusters........... i 19

3.8.2 Adding sequencescooiiiiriii 19

3.8.3 Reclustering........ ... 19

3.9 Format of input files......... 20
300 Outpub . ..o 21
3.11 Auxiliary programs.oeiiiiiiin 22
3.12 Running wed in parallel 23
3.12.1 Shared Memory Parallelisation......................... 24
3.12.2 MPI Parallelisation L 24

4 wcd inside stackPACK............ccovvunnn.. 25
5 Technical manual 26
5.1 Program structure.......... 26
5.2 Datastructures 26
5.3 The algorithms........ 28
5.3.1 Heuristic.... ... 28

5.3.2 The parameters of do_cluster, and implementing merging and

add .. 29

5.4 How to add distance functions............................... 30
5.5 Parallelisation.......... 30
5.6 Work allocation in MPIT........ 30
5.7 Work allocation using Pthreads.............................. 30
5.7.1 Distributed Parallelisation.............................. 31

6 Testing.........oviiiiiiiiiiiiinnnnnnn. 32
Comment by SH 33

7 Acknowledgements and copyright.......... 34
7.1 Acknowledgements 34
7.2 Copyright 34

Concept Indexiiiiiiiinnn... 35

ii

Chapter 1: Description 1

1 Description

This manual describes wed (pronounced ‘wicked’), a program that performs clustering of
sequences. Essentially, it takes a set of DNA sequences (typically Expressed Sequence Tags,
ESTs), and clusters the sequences into the related groups.

It reads in a set of DNA sequences (typically ESTs or mRNAs) in FASTA format and
organises them into clusters of similar sequences, producing a list of clusters and their
members on standard output.

The clustering performed is single-linkage clustering. Sequences are put in the same
cluster if they have regions of close similarity. Similarity is determined using one of the
standard distance functions. In versions > 0.2.0 of wecd, three distance functions are sup-
ported: the d2 function, edit distance and a common word heuristic. This may be expanded
in later versions of wcd.

When using the d2 distance function, wed’s results are similar to those generated by the
d2_cluster program, which also implements clustering based on the d2 distance function.
For a comparison of the two programs, See Chapter 6 [Testing|, page 32.

The use of the d2 distance function in DNA sequence comparison is described in Hide et
al. (1994) and Burke et al. (1999), and has been shown to be sensitive to sequence similarity
even in the absence of direct sequence alignments. This corresponds with the nature of
EST data which typically contains single-base read errors and may contain sequence from
different splice forms of the same transcript (leading to local dissimilarity).

Thanks to the properties of the d2 distance function, sequence clusters created by wcd
correspond to closely gene classes i.e. all the ESTs originating from a specific gene will be
clustered into a single class.

wcd is written in C and has been successfully installed and tested on Linux, FreeBSD,
SGI Irix, Sun Solaris and Windows 2000 (under Cygwin).

Users of wed are encouraged to subscribe to the wed-users mailing list using the form at:
http://swing.sanbi.ac.za/mailman/listinfo/wcd-users.

The remainder of this manual assumes that a user understand the basic principles of
what EST clustering is about, and so the basic concepts are only briefly reviewed in this
chapter. Subsequent chapterd discuss installing and running wed, as well as giving some
technical background so someone who wants to use some of the code.

1.1 Clustering

The basic idea is that we take a set of sequences and cluster them so that sequences that
are close to each other in the same cluster. There are many clustering algorithms, and one
review can be found in

@article{cluster2,
author = "A. K. Jain and M. N. Murty and P. J. Flynn",
title = "Data clustering: a review.",
journal = "ACM Comp. Surveys",
volume = "31",
number = "3,

pages = "'264--323",

http://swing.sanbi.ac.za/mailman/listinfo/wcd-users

Chapter 1: Description 2

month = sep,
year = "1999"
}

The type of clustering we do is single linkage clustering. We create the largest number
of clusters (and hence smallest clusters) such that if two sequences are very close they are
put in the same clusters. Note the definition is transitive: if A and B are close, and B and
C are close then A and C will be in the same cluster even if A and C are far apart.

The basic clustering algorithm is shown below (obviously, there are performance en-
hancements).

foreach sequence 1
put i in its own cluster
foreach sequence i
foreach sequence j
if i and j are close to each other
merge the clusters to which i and j belong

1.2 Distance functions

A distance function takes two sequences and returns a number that says how far apart the
sequences are mathematically. Many distance functions have been proposed with different
biological and computational motivations: hopefully a well-chosen distance function will
return a mathematical value that has some biological distance.

One of the purposes of wcd is to allow different distance functions to be used. The
distance functions which wed supports

e d2, edit distance

1.2.1 The D2 distance function

The d2 distance function is based on the word count.
e Let z be a sequence and w a word

We use the notation ' € z to mean that 2’ is a window or substring of z of some
specified length.

e c,(w) is the number of times that w appears in z.

1.2.1.1 General formulation

To measure the distance between sequences we compute the word frequencies and then take
the sum of the square of the differences

For a fixed k, we examine all the words w of length k£, and compute the frequencies which
they occur in the strings z and y, and then sum the square of the differences. Formally,

di(z,y) = E|w|:k(cr(w) —¢y(w))
Then in general

d2($’ y) = Zézl di(:ﬂ, y)
for constants [and L. In practice (and this is what wed does), we compute the d2 score for
a fixed k. The default value of k is 6, but this is a parameter of the program.

Chapter 1: Description 3

1.2.1.2 Windows

The goal of EST clustering is to see whether there is an overlap between two sequences:
thus we are no interested in the d2 score between the whole of one sequence and the whole
of another, but whether there are two regions (called windows) that have a low d2 score.

Thus the d2 score between two sequences is the minimum of the d2 score between all
pairs of windows of those two sequences. dj(x,y) = minycp ey 2o (Car (W) — ¢ (W)

The consequence of this is that d2 applied like this does not obey the triangle inequality.
It is very common that

d*(x,2) > d*(z,y) + d*(y, 2)

since there is a window that x shares with y, another that y shares with z but no window
common to both z and z.

As an aside, d2 even when applied to sequences is not a metric since d*(x,y) = 0 does
not necessarily imply that x = y.

We don’t compare two sequences directly. Rather we compare all windows of fixed length
in one sequence with all the windows in the other. The default window length is 100 (again
it’s parameterisable).

1.2.1.3 References

The paper by Burke et al describes the basic d2 method and justifies its use. The paper
by Hazelhurst describes the algorithm that is implemented in wcd. This paper should be
available from the ACM Digital library http://www.acm.org/dl.

@article{burke99,
author = "J. Burke and D. Davison and W. Hide",
title = "{D2_cluster: A Validated Method for Clustering EST and Full-length cDNA Seque
journal = "{Genome Researchl}",

year = 1999,

volume = 9,

number 11,

pages = "1135--1142"

+
Q@InProceedings{hazel2004c,
author = "S. Hazelhurst",
title = "An Efficient Implementation of the $d"2$ Distance Function for {EST} Clus
booktitle = {Proceedings of {SAICSIT 2004}: Annual Research Conference of the South Af
pages = 1229-223",
year = 2004,
editor = "G. Marsden and P. Kotz\’e and A. Adesina-0Ojo",
series = "{ACM} International Conference Proceedings Series",
month = oct

http://www.acm.org/dl

Chapter 1: Description 4

1.2.2 Edit distance

Edit distance is well known; the reference below gives a very thorough introduction to the
subject.

The version of edit distance implemented in wed does local alignment (Smith-Waterman).

Penalties (positive numbers) are given for mismatches, deleltions or gaps, and a reward (a
negative number) is given for a match. The default values are:

-1 for a match
+3 for mismatch
+5 for opening a gap (indel)

+2 for extending a gap

The user can change these values.

©@Book{ gusfield97,
author = "D. Gusfield",
title = "Algorithms on strings, trees, and sequences",
address = "Cambridge, United Kingdom",
publisher = "Cambridge University Press",
year = 1997

Chapter 2: Installing wed 5)

2 Installing wcd

2.1 Getting new versions of wcd

The latest version of wed can be found at:
http://code.google.com/p/wcdest
You should also be able to find it at: ftp://ftp.cs.wits.ac.za/pub/research/software/|]

Please let me know if you would like to be told about new versions of wcd.

2.2 Changes from versions 0.3.x

There are a number of changes from 0.3 to 0.4 in memory organisation and algorithm. The
first two are important to note if you used the options as the appropriate default values
have changed.

e The sample word length is no longer a parameter. It’s fixed as a constant at 8. This
was done after extensive empirical testing. Fixing so that a sample word fits in a
machine word has numerous computational advantages. The -B option therefore no
longer exists. The default value for the -K is now 6.

e Our second heuristic, the so-called t/v heuristic has been replaced in favour of a com-
mon word heuristic. The the common word heuristic does seem better it is more
expensive to implement. The -H or —common_word heuristic’s default value is now 65.

e The SMP algorithm has been simplified. It is now possible to use the Pthreads and MPI
parallelisation together. This may be useful when you have a cluster of multi-processor
machines, but it may be easier just to run multiple MPI jobs.

2.3 Installing the distribution

The distribution comes as a gzipped, tarred file. The following commands should create a
directory called ‘wcd_distrib’ with all the necessary files.

gunzip wcd_distrib.tar.gz
tar -xf wcd_distrib.tar

2.4 Compiling

There are two possible ways to compile and install wed

2.4.1 Method 1: using configure

The INSTALL file gives a more detailed explanation and description. The following should
work if you don’t want anything fancy. If you do, or if you want to ensure that some compile
flags are different, then read the INSTALL file.

./configure
make
make install

Note that the last instruction will attempt to install the executable and documentation in
the appropriate places on your system and will probably require you to have root privilege
or write permission for those standard directorites. If you don’t have these, you can find

http://code.google.com/p/wcdest
ftp://ftp.cs.wits.ac.za/pub/research/software/

Chapter 2: Installing wed 6

the executable wcd in the src directory and the texinfo documentation wed.info in the
doc directory. Manually copy these to the correct place.

If you are using FreeBSD, you may have to make a small change to the common.h file.

If you want a manual you can print out, say make pdf. Otherwise you can read the on-
line version using the info system. If the documentation is installed in the right place on
your system you can just say info wcd, otherwise you will have to say info -f wcd. info.

wed should work on 64-bit, little-endian and big-endian machines.

2.4.1.1 MPI Version

From version 0.3.0, wed has an MPI version that allows parallelisation of the clustering on
a cluster of workstations.

./configure --enable-MPI
make
make install

Initial experimentation has shown that using the MPI option when not necessary leads to
a 2\% degradation in performance, so the main benefit of not using the enable-MPI option
is that wed will compile without the MPI libraries.

2.4.1.2 Pthreads

From version 0.3.0, wed has an MPI version that allows parallelisation on SMP architectures

./configure --enable-PTHREADS
make
make install

In version 0.4, the two parallelisation techniques complement each other. You can run on a
cluster of SMP machines. However, an assumption is made that each of the SMP machines
has the same number of processors. In version 0.3, binaries supporting both techniques
could be used but only one used in a particular run; this no longer holds in 0.4.

2.4.2 Method 2: Manually using make

The wed program is written in reasonably standard C. If you don’t want to or can’t use the
autoconf method described above, try the following. Change directory to the src directory.

make -f WcdMake wcd

This was tested on different versions of RedHat and Suse and worked without problem. wcd
is written in reasonably standard C, and so should work on most systems, but unfortunately
the vagaries of different libraries and compilers might make the standard compilation fail.
See the troubleshooting section below for some suggestions.

To get documentation, running make —-f WcdMake pdf in the src directory will produce

a pdf version of the manual (placing output in the doc directory). make -f WcdMake info
will produce texinfo version.

2.4.2.1 Trouble shooting

If you know something about your system and are happy mucking about with make files,
please read the technical note below and make the necessary changes. If not, try the
following suggestions. There are three likely causes of problems: (1) wed supports long

Chapter 2: Installing wed 7

options (e.g. you can say --cluster_compare rather than -D); (2) your compiler is cc
rather than gcc; and (3) your compiler does not support procedure inlining (inlining may
make some performance benefit, but does not change functionality or use). The makefile
WcdMake is the one to look at.

1. Try make -f WcdMake simple to see whether the problem is that you don’t have the
libraries that support long options. If this works, wed will run as is, except that you
cannot use the long options form for wecd, only the short-form options.

2. If your compiler is named cc rather than gcc, try saying make -f WcdMake ccsimple.

3. If that doesn’t work, try switching off inlining as well by doing make reallysimple. In
this case neither long options or inlining is used. If your compiler is cc then try make
—-f WcdMake ccreallysimple.

wcd was tested on a number of different systems. The table below shows what worked on
those systems. With a little tweaking of the makefile to specify where gcc libraries on your
machine are, you might get the standard make wcd to work too.

Linuz RedHat and Suse
make wed

Sun OS 5.10, Darwin, Aix, FreeBSD
make simple

Iriz64, Alpha/OSF1 Tru64, Cray
make ccreallysimple

With the FreeBSD machine I managed to get the full version to work by finding the appro-
priate libraries and includes. The same thing probably applies to the others.

This section only need be read if make wcd did not work and you would like to have long
options working.

The non-standard options of wed are to use inlining and the long options library. If your
system does not support inlining then the compiler must be given the -DNOINLINE flag when
run. If your system does not provide a library for getting long options then the compiler
must be given the ~-DNOLONGOPT flag.

If, however, your system does provide a long options library and you would like to use long
options, then you must say where the include file (‘getopt.h’) and where the library will be.
You may also have to explicitly tell the compiler to use the ‘1ibtextlib’ library. Find out
where these things are, and change the variables in the WcdMake to the appropriate values
and then run make try. For example, if the include file is in /usr/share/contrib/gcc and
the library is in /usr/local/1ib you might have
INCLUDES = /usr/share/contrib/gcc
LIBS = /usr/lib
EXTRAFLAGS = gettextlib
You might or might not have the EXTRAFLAGS variable defined.

The makefile assumes that the compiler available is gcc. If it’s not or if you wish to use
a different compiler, then edit the file Makefile and change the definition of the variable
CC to the appropriate compiler.

If this doesn’t work, then it may be that your libraries are in non-standard places. Look
at the Makefile and try the following things

Chapter 2: Installing wed 8

e Add ‘-DNOLONGOPT’ to the CFLAGS variable. In this case, you can’t use the long form
options (e.g. you must say -g rather than --histogram)

e Try replacing ‘gcc’ by ‘cc’.
e Add to the CFLAGS the directories where the include and libraries can be found.
wcd’s MPI and PTHREADS code are optional. In the code there are macros that protect

all references to MPI and PTHREADS. Unless these macros are defined the compilier won’t
know about them. This enables wed to be compiled without having either libraries.

If you are making manually rather than through configure, and you want to use MPI or
PTHREADS (either or both), then you must make sure that either (or both) the MPI are
PTHREADS macros are defined. You could either put the relevant defines in the wed.h
file, or pass it to gcc with something like -D MPT.

2.4.3 EMBOSS

EMBOSS wrappers are available from the same source as the wed code itself.

2.4.4 Auxiliary programs

A number of auxiliary programs are included. They may be useful but are not essential.
They are either Perl or Python

See [Auxiliary Programs]|, page 22, for more details. They should run as is, but if your
version of perl or python is not in a standard place, edit the files and change their first
lines to replace the line that says

#!/usr/bin/perl
with
#!/usr/local/bin/perl
or whatever.

In addition to these programs, there is a shell script wcd_wrapper.sh that allows wed
to be used as a replacement for d2_cluster in the stackPACK analysis pipeline.

2.5 Documentation

This info file can be read by saying
info -f wcd.info

To create the documentation say ‘make pdf, make html’, etc depending on what sort of
document you want. This creates the following;:

e ‘wcd.info’: the info file which can be read using the texinfo system. This is probably
easiest for reference purposes. You can read the on-line version using the info system.
If the documentation is installed in the right place on your system you can just say
info wed, otherwise you will have to say ‘info -f wcd.info’, or give the full path.

e ‘html’: a directory that contains all this help information in HTML files. Use your
browser to read it.

e ‘wcd.pdf’: A PDF version of this help file, which is probably the best for a hard copy.

You can play around with ‘makeinfo’ etc. if you want different versions.

Chapter 3: Running wed 9

3 Running wcd

wcd can be invoked in different ways. The first just shows the usage; the others are func-
tional. They take an input file in FASTA format and process it in some way. wed numbers
the sequences in the file from 0 upwards, and these indices are used to refer to the sequences.

3.1 Summary

Options or switches to wed can be given in short form (e.g. -D) or long form (e.g. --
cluster_compare). On some systems, only the short form options are supported.

Usage: wed -v | -u |-h
-v: version
-u: usage
-h: usage

Usage: wcd [opts] <filename>

-c, —--show_clusters: show clusters compactly

-d fname: use the file as a dump file

-F fun, --function fun: say which distance function to use -f fname, —--init_cluster:
-g, ——histogram: show histogram

-H val, --common_word val: set common word heuristic threshold (default 5)

-j fname, --constraintl fname: set constraint file 1.

-J fname, --constraint2 fname: set constraint file 2.

-K val, --sample_thresh val: give sample heuristic threshold

-1 val, --window_len: set window len (default 100)

-n, -—no_rc: don’t do RC check

-o fname , --output fname: send output to file [stdout] -P fname, --parameter fname
-R <filename> <ind1> <ind2>: perform cluster on a range

-s, ——performance: show performance stats

-S val, --skip val: set skip value

-t, ——-show_ext: show extended cluster table

-T val, —-—-threshold val: set threshold to value

-w val, --word_len: set d2 word length (default 6)

-X: clone linking

Usage: wcd [-i|--show_seq] <index> <filename>
show the sequence with the given index

Usage: wcd [-I|--show_rc_seq] <index> <filename>
show the RC of the sequence with the given index

Chapter 3: Running wed 10

Usage: wcd [-E|l-el-p] <filename> <ind1> <ind2>

-E, -—compare: show seqs, number common words, and d2scores
-e, ——abbrev_compare: show min of d2scores (pos + rc)
-p, —~pairwise: show pairwise d2 scores of all windows

Usage: wcd [--cluster_compare,-D] <seqfile> <indicesfile>
compare two clusters

Usage: wcd [--merge,-m] <seqfl> <clfl> <seqf2> <clf2>
merge two clusterings

Usage: wcd [--add,-al] <seqfl> <clfl> <seqf2>
add a set of sequences to a known clustering

Usage: wcd [--recluster,-r] <clfl> <seqfl>
recluster from a less stringent clustering

3.2 Examples — A Quick Introduction to wcd

This section shows common ways in which wcd is likely to be invoked.

3.2.1 Basic Clustering
The following examples show straightforward clustering examples.
> wcd —-show_clusters data/5000.seq

Cluster the sequences found in the file data/5000.seq. Print the clusters on standard
output in compact form. Use the d2 function to determine cluster membership.

> wcd --histogram --show_clusters data/5000.seq
As above, but also print a histogram that shows the size of the clusters found.
> wcd —~histogram --function ed data/5000.seq
Cluster as above, but use edit distance as distance function.
> wcd ——output ans/5000.ans --histogram --show_ext data/5000.seq
> wecd -0 ans/5000.ans -g -t data/5000.seq

As above, but print the clusters in extended, table format. Also save the output in a
file.

> wcd -c -N 5 data/5000.seq

If the wed has been installed with the PTHREADS option. Run wed on 5 processors at
the same time.

> mpirun -np 16 wcd -c data/5000.seq

If the wed has been installed with the MPI option. Run wcd on 16 processors using the
MPI libraries.

Chapter 3: Running wed 11

> wecd -X -c data/5000.seq

Cluster, but also use clone information. If two ESTs come from the same clone, they’ll
also be put together. The clone information comes from the FASTA file directly — it’s
the symbol that follows the word “clone” in the header. This is a convenient option,
but for larger files it would be better to put this information in a constraints file.

3.2.2 More advanced clustering

3.2.2.1 Using a clustering file

This can be used to seed the clustering to start with. Instead of starting each sequence in
its own cluster, we do some preallocation of clusters. wcd will then continue clustering using
this a start: no clusters will be broken up, but some of the clusters will be merged. This
might be useful when you know for some reason that some sequences should be clustered
together regardless of d2-score (e.g. from an annotation or from biological knowledge).

In this case, create a clustering file. Each cluster should be on a line by itself, terminated
by a full stop ‘.”. This line can be as long as you like, but don’t break it. For example,
suppose we know that sequences 0, 2, 10, and 11 should be clustered together; and so should
6, 17, 107, and 120; and so should 151 and 152. Your cluster file (let’s assume it’s called
init.cl would look like this:

02 10 11.
6 17 107 120.
1561 152.

Those sequences that are not mentioned will be put in their own clustering. Clustering in
then done by saying;:
wcd --show_clusters -f init.cl data/5000.seq

3.2.2.2 Using a constraint file

A constraint file enables you to specify additional knowledge about the data and so help
wed do clustering more efficiently and more correctly. Each line in the cluster file gives a
directive. There are three directive.

e fix. Suppose you know that two sequences definitely should not be clustered together
(you might know this from previous experiments). You can then tell wed never to
merge two clusters containing these sequences. For example, suppose sequences 1, 17
and 325 definitely do not belong in the same cluster. Then you would have as a line in
the constraint file:

fix 1 17 325.

Note that fixedness is either all or nothing. There is no way in the current version of
saying don’t cluster 1 with 325, and don’t cluster 45 with 360, but it’s OK to cluster
1 with 45 or 360. If there turns out to be a need for it, it might be included in a later
version of the program.

e cluster-only

The clustering table allows you to provide an initial clustering, which wcd can then
refine. Sometimes you may only want to refine the clustering of some of the sequences.
In which case you can make major performance savings by using the cluster-only

Chapter 3: Running wed 12

directive to tell wed to only refine the clustering of some of the sequences and to leave
the clustering of all the others as given initially by the clustering table. For example, if
we had the following clusters: [0, 1, 4] [2,3,7] [5] [6,8] [9]; and we were generally happy
with the clustering but wanted to see whether [2,3, 7] should be merged with [6,8], the
following directive could be used

cluster-only 2 3 6 7 8.
wcd would then check to whether those clusters would be merged.

NB: It only makes sense to have one cluster-only directive. It can be as long as you
like.

e reset This is similar to cluster-only except you want to say that you are happy with
the clustering of the other sequences but not happy with the clustering of the specified
sequences. Typically, you would be concerned that the clustering of the specified se-
quences was too lenient (i.e. that some sequences had wrongly been put together). So
taking the above example, if you said

reset 2 3 6 7 8.

You would be saying that you wanted to leave the clustering of 0, 1, 4, 5, and 9,
but you wanted to cluster the other sequences de novo, completely ignoring the initial
clustering.

The major difference between cluster-only and reset is that with reset you are
saying that you want to recluster the specified sequences de novo: you think that some
of the sequences specified that have been clustered already should not be and you want
to check again (probably using other parameters). With cluster-only you are happy
with what clustering has been done, but you want to check whether there should be
even more clustering.

e cluster-others, reset-others. This has the same semantics as the previous two
except the specified sequences should be left as is and not processed, and the sequences
not specfied should be clustered again.

3.2.2.3 An example of reclustering and constraint files.
We had a very large data set to cluster with heterogeneous data. Some of the long sequences
had very large overlaps. We did the following.
1. Prepare a suffix array of the data file (this part is explained in more detail later).
fasta2sary -x -d 10 bp.fasta -o bp.fasta.nlc
mksary bp.fasta.nlc
2. Cluster with a very high degree of stringency
wcd -c¢ -F suffix -w 120 bp.fasta > bpl120.clt
This creates a cluster table which contains one very large super cluster (of about 43k

sequences) and lots of other very small clusters. We copy the line that contains the
supercluster into a file bp120.con and put “cluster-others” in front of it

reset-others 6355 29988 2 9282 71821 4
3. Cluster less stringently

We cluster again, less stringently. This time we initialise the clustering with the cluster-
ing given by bp120.clt subject to the constraint file. This says: leave the super-cluster
as-is. Recluster all the other sequences from scratch.

Chapter 3: Running wed 13

wcd --init-cluster bpl120.clt --constraintl bpl20.con -c -F suffix -w 90 bp.fasta > bp90

This shows no new super clusters so we throw away bp90.clt and continue with
bp120.clt.

4. Cluster using a small word size

We recluster, leniently, (25-30 is probably a good choce of word size) and create a
new cluster table bp30.clt. To recap what this does: leave the supercluster as is, and
recluster everything else from scratch on the basis that two sequences should be put in
the same cluster if they share a common word of length 30.

wcd --init-cluster bp120.clt --constraintl bpl20.con -c -F suffix -w 30 bp.fasta > bp30

This clustering is probably too lenient and so the clusters, except for the super-cluster,
are probably too big.

5. Refine the clustering bp30.clt

Now we want to cluster again more strictly using the bp30.clt as the starting point.
Within each cluster of bp30.clt we recluster afresh using the standard d2-clustering
algorithm. We do no compare sequences from different clusters of bp30.clt to see
whether they should be put together, but only compare sequences within the clusters
of bp30.clt If we didn’t have to worry about the supercluster we would just say:

wcd --recluster bp30.clt -c bp.fasta

But we do have to worry about the supercluster. So there are two things we need to
do: first, tell wed not to look at elements of the supercluster; second, tell wed to put
the all the elements of the super-cluster together. To do the first we use the constraint
file. To do the second we extract out of bp120.clt the line with the supercluster and
save it in a file, say ‘super.clt’. This is exactly the same as ‘bp120.con’ without the
‘cluster-ony’ directive and initialise the clustering with it. So all in all we say

wcd --recluster bp30.clt --init_cluster super.clt --constraintl bpl20.con -c bp.fastal]

3.2.3 Merging and adding

These features of wcd enable you to combine two clusterings. You could do this de novo,
but there are performance benefits of using these wed features.

Suppose you have two files

e File 1, ‘datal.seq’: 15 sequences, numbered 0 through 14. The clusters (as produced
by wed and saved in a file ‘datal.cl’)

01212 13 14.
3.

456 8.

7 9 10 11.

e File 2 (‘data2.seq’): 12 sequences, numbered 0 through 11. The clusters (as produced
by wed and saved in ‘data2.cl’) are:

024 10.
1 35.
6789 11.

You now want to merge the two files. You are happy with the clustering of the two files
with respect to themselves, but you now need to see whether the sequences in the one file
are related to the sequences in the second file. You would do this by saying:

Chapter 3: Running wed 14

wcd ——show_clusters —-merge datal.seq data.cl data2.seq data2.cl

This merges the two clusterings. All the sequences in the first file will be compared to all
the sequences in the second. The new clustering would be output. The sequences in the
second file will be renumbered 15 to 26. For example a possible output might be:
01212 13 14.

3 21 22 23 24 26.

456816 18 20 7 9 10 11.

15 17 19 25.

This could happen if sequence 3 in file 1 is related to sequence 21 (6 in file 2); sequence 4
in file 1 related to sequence 16 (1 in file 2); and sequence 7 in file 1 to 18 (3 in file 2).

Adding
Adding allows you to add unclustered sequences into a cluster.
wcd ——show_clusters --add datal.seq datal.cl data2.seq

would add the sequences in the file data2.seq to the ones in datal.seq, clustering as
appropriate.

3.3 Help
Usage: wcd -u |-h
-u: usage
-h: usage

-v: shows version

Shows how to invoke wed

3.4 Identifying a sequence

Usage: wcd [--show_seq, -i] <index> <filename>
wcd [--I show_rc_seq] <index> <filename>

e wcd —-show_seq i dataf
Prints the i-th sequence in the data file dataf
e wcd ——-show_rc_seq i dataf

Prints the reverse complement of the i-th sequence in the data file dataf

3.5 Comparing two sequences

Warning: These options may be removed in later versions of d2-cluster, and should be
treated with caution.

These options are included to allow exploration and evaluation of data rather than for
clustering purposes. The problem is that optimisations made for performance reasons have
meant that they do not give completely accurate answers. For example, if we find windows
where the d2 score is less than a threshold, we announce success; we don’t try to find the
pair of windows with the smallest overlap. In subsequent releases there may be a separate
program which provides these facilities (though with less efficient code).

Chapter 3: Running wed 15

All these options can also take as options the options which allow changing of threshold,
window and word size.

Usage: wcd
wed
wed

[--compare|-E] <filename> <ind1> <ind2>
[--abbrev_compare|-e] <filename> <ind1> <ind2>
[--pairwise|-e] <filename> <ind1> <ind2>

e wcd ——compare dataf i j

Compares the sequences i and j from the datafile dataf and prints out the following

e The i-th sequence, the j-th sequence, and the reverse complement of the j-th se-
quence

e A line with the following information

1 and j

An estimate the number of samples of the j-th sequence which appears in the
th.

An estimate the number of samples of the jth sequence which appears in
reverse complement of the ith.

An estimate the number of words of the j~th sequence which appears in the
-th.

An estimate the number of words s of the jth sequence which appears in
reverse complement of the ith.

the d2 score between ¢ and j

the d2 score between ¢ and the reverse complement of j

e wcd ——abbrev_compare dataf i j

Prints the minimum of the: (1) the d2 score of i an j; and (2) the d2 score of i and the
reverse complement of j.

e wcd ——pairwise dataf i j

First prints a table of the d2 scores of all windows of sequence i compared to all windows
of sequence j. Then does the same with the RC of sequence j

Usage: wcd

[--cluster_compare, -D] dataf clusterf

Takes two arguments: a data file with sequences, and a file that gives two clusters. This
cluster file should contain exactly two lines. Each line should contain the indices of the
sequences belonging to a cluster. The indices should be separated by spaces, and the line
terminated by a full stop.

The program will then compare each sequence in one cluster with each sequence in the
other and print out the d2 scores (both positive and RC). One each line of output there is
the result of one comparison. First the two indices are printed out, and then the two d2

scores.

3.6 Doing clustering

wcd [opts] <file>

3.6.1 Arguments

When used in this way, wed takes one argument: the name of the input file.

Chapter 3: Running wed 16

3.6.2 Options

[--output | -o] fname
By default all wed output goes to standard output. Using this option allows you to
specify another file
[--num_seqs | -C] val
By default all the sequences in the input file will be processed. If you only want to
process part of a file, you can use the -C option.
e.g. ——num_seqs 100
will only process the first 100 sequences.
If you specify a number greater than the number of sequences actually in the file, then
the whole file will be processed.
—--show_clusters, —-c
Prints the results of the clustering in a compact way. Each cluster is printed on a line
by itself. The sequences that make up the cluster are separated by commas. See See
Section 3.10 [Output], page 21, for more description.
--histogram, —-g
Show a histoGram of the results of the clustering. For each cluster size, it shows how
many clusters there are that size up to some maximum size.
—--show_ext, -t
Prints the clustering in extended format. See See Section 3.10 [Output], page 21, for a
description of the format.
[--output | -o] fname
By default any output gets sent to standard output. You can send output to a given
file.
[--function | -F] fun wcd decides whether two sequences should clustered together
on the basis of a distance function. The distance function that can be used are
e ——function d2: use the d2 function. This is the default. The default threshold is
40.
e —-function ed: use edit distance (local alignment). The default threshold is -20.
See the --parameter option below for how to specify other options.
e —-function heuristic: use the common word heuristic described below. The
common word heuristic gives a crude and fast membership criterion.

e ——-function suffix: A pair of sequences are clustered together if they share at
least one word. A good value to use is 25: note that the default value of 6 is a
very bad value.

[--parameter | P] fname

This specifies a paramter file that parameterises the distance function. In the current
version this is only used by the edit distance option. The first four lines specify a 4x4
matrix which give penalties for substiutions (a,c,g,t vs a, a, ¢, g, t). There are four
integers per line which should be separated by a single space. The fifth line gives two
integers, separated by a space which give the cost for opening a gap and extending a
gap. The file that would be used for the default parameters is shown below

Chapter 3: Running wed 17

-1 333
3-133
33-13
333-1
52
e [--common_word | -H] val

Set the common word heuristic threshold (the default is 65). Before running a d2
check between 2 sequences, this first checks to see how many distinct 6-words are
shared between the sequence (NB, the sequence, not some windows). This can be done
in linear rather than quadratic time and so is probably 2 orders of magnitude faster
than checking d2. If not enough common words are found, a d2 check will not be done.
[NB: this has changed from version 0.3]

e [—-window_len| -1] val
Set the window length to the given value. The default is 100
e [--skip_vall|-8] val

Set skip value — how much the window along the second sequence should be updated.
The default is 1. Don’t be too aggressive. Setting the common word threshold at its
default value is probably better than changing the skip value (IMO).

e [--threshold_val, -T] val

Set the distance threshold — the default is 40 for d2, -20 for edit distance.
e [—-word_len|-w] val

Set the d2 word length (default 6)
e —-performance, -s

Show performance stats
e --no_rc, -n

Don’t do the reverse complementation check (rc-checking is done by default.
e [--constraint, -k] filename

Give the constraint file for the first input data file. This is optional. The constraint
file enables you to ensure that certain sequences are not clustered together or to ignore
certain sequences while clustering. See [Format of Constraint File], page 20, which
gives more details on the required format of the constraint file, and the semantics.

e [--sample_word_len | -B] val
Word length used in the sample heuristic. See below for use.
e [--sample_thresh | -K] val

This is the threshold for the sample heuristic. Suppose K and B are the sample word
length and threshold parameters. When comparing two sequences i and j, the first
sample test described below is done. If it passes, a more rigorous test is done for
similarity; if it fails the pair is declared not to have overlap.

The sample test: When comparing two sequences ¢ and jevery 8-th word of length B
is sampled from j; at least K must also occur among all the words in ¢. The defaults
are K =7, B = 8 which is conservative. [NB: this has changed from version 0.3]

Chapter 3: Running wed 18

e -X: Do clone linking

wcd will use the clone information in the sequence headers to put sequences together.
If a sequence header contains the word Clone followed by a string, then that sequence
is identified as matching a particular clone. All ESTs matching a particular clone will
be clustered together. (The current implementation is very simplistic and probably
adds about 25\% cost to clustering. It will be improved in future).

3.6.3 Clustering based upon suffix arrays

This provides a coarse clustering very quickly. It puts two sequences in the same cluster
if they share at least one word (of the specified word length). You need to create a suffix
array of the input data file. wcd expects a certain naming convention to be used.

In order to use this facility you must create some auxiliary data files in the
same directory as your main sequence file. 1 assume you have available the mksary
suffix array package, though in principle others should do. ‘mksary’ can be found at
http://sary.sourceforge.net/

Once ‘mksary’ has been installed, do the following

./fasta2sary data.fasta -o data.fasta.nlc
mksary data.fasta.nlc

This will leave three files data.fasta, data.fasta.nlc and data.fasta.nlc.ary. Again:
wcd expects this naming convention to be met.

To cluster

wcd -F suffix -w 30 -c data.fasta

3.7 Clustering a range
Usage: wcd [--range, -R] dataf i j

The range option allows clustering only a range or slice of the input data file in the following
way.

e Each sequence in the file with an index from 4 (inclusive) to j-1 (inclusive) is compared
to each sequence from +1 to the end. More precisely

for (k=1,k<j,k++)
for (m=k+1, m<num_seqs; m++)
compare sequences k and n and cluster if necessary

If you think of the all the comparisons to be done as the upper half of a matrix, the range
option restricts the comparisons to be done to a slice of this matrix. The purpose of the
option is to allow a simplistic and crude parallelisation of work. We can run the multiple
wcd processes with the same data but different slices. Typically we would also use the
—-—dump option with this. See the section on parallelisation in the technical manual.

If the dump option is chosen, just before completion wcd creates a file with an -FIN
suffix. For example if the dump file name is rangel0, then a file called rangel0-FIN is
created. This enables monitoring programs which run asynchronously and cannot control
the wed process directly to use the file system to determine whether the job has completed.

http://sary.sourceforge.net/

Chapter 3: Running wed 19

3.8 Refining clusters

3.8.1 Merging clusters

This can be used to merge two known clusterings. The input is two FASTA files with the
sequences and two files that give the clusterings.

It assumed that the two FASTA files are disjoint.

Usage: wcd [--merge,-m] <seqfl> <clfl> <seqf2> <clf2>

merge two clusterings
Here you merge two clusterings that have already been computed. The four arguments
are: the first FASTA file, the first clustering file, the second FASTA file, and the second
clustering file. These are mandatory.

The --constraint option may be of particular use here. This can be used to constrain
the first input file and its related clustering. You can use the —--constraint2 option to
constrain the second input file.

The files that specify the clustering must be in the same format as produced by the
compressed clustering format.. The sequences are referred to by index number (the position
of the sequence in the input file), numbered from 0. Each cluster is given on a line by itself
terminated by a full stop: the indices of the sequences in the cluster are printed out,
separated by spaces.

The output is a a new cluster table in the same format as the input cluster table. The
indices shown in the table are:

e The same as the input index if the sequence came from the first file specified.
e n+input index if the sequence comes from the second file, assuming n sequences in the
first file.
Another useful option for merging is:
[--constraint2, -k] filename

Give the constraint file for the second input data file (it. This is optional. The
constraint file enables you to ensure that certain sequences are not clustered
together or to ignore certain sequences while clustering. See [Format of Con-
straint File], page 20, which gives more details on the required format of the
constraint file, and the semantics.

3.8.2 Adding sequences

This can be used to add a number of new sequences to an existing cluster. It is assumed
that the new sequences do not exist in the original file.

The input is two FASTA files and a cluster table for the first file. The remarks above
apply here.

3.8.3 Reclustering

Usage: wcd [--recluster,-r] <clfl> <seqfl>
recluster from a more stringent clustering

This takes a clustering based on a more lenient (or just different) criterion and reclusters
using d?-scores as the basis for clustering. The clustering as given by the input cluster table

Chapter 3: Running wed 20

is given as a scheme. For each cluster of the initial cluster table, wcd does a d2-clustering on
the sequences in that cluster, ignoring all the other sequences. wed will never compare the
sequences in one cluster with the sequences in another. The resulting clustering is therefore
a finer partition.

3.9 Format of input files

The format of input files is:
e FASTA format

e will treat Ns randomly.

What is meant by FASTA format? Each sequence MUST be preceded by an identification
line. Each sequence itself may be on one line, or it may be on several lines. If it is on several
lines, each line should terminate with a carriage return and there must be NO spaces on
each line.

The identification line starts with a ‘greater-than’ sign (>). This is all that is required.
IF there is an alphanumeric sequences (string with no blanks) IMMEDIATELY following
the greater than sign then that is treated as a sequence ID that is used by a few of the
options for display purposes. The rest of the identification line is completely ignored.

Format of clustering input

The merge and add options require as input files that specify a clustering. These files must
use the compressed format described below.

Format of constraint file

Constraint files consist of a sequence of constraints, each on a line by itself. Each line in
the constraint file is a directive followed by a list of indices, terminated by a full stop ‘..
There are three directives and their semantics are described below.

o fix
This directive can be used to specify a list of sequences which should be labelled fized.
Any cluster than contains a fixed sequence will be labelled as fixed. This is useful when

the user has some external knowledge about the clustering and wants to ensure that
some sequences aren’t clustered together (e.g. by a poor quality EST).

Normally when a program starts, each sequence is put into a cluster. By default, a
sequence is put into a cluster by itself, but if a clustering file is given then the clustering
specified by that will be used.

Thereafter, clustering starts. However, if the fix directive is used, two sequences that
are labelled as fixed will never be merged. If an EST matches more than 1 fixed cluster
it will be added to at most 1 of them. Note that sequences that are not fixed can be
added to fixed clusters, and a non-fixed cluster can be added to a fixed cluster.

e cluster-only

This tells wed to only try to cluster those sequences that in the list (ignore the rest).
This is useful if you only want to cluster a part of an input file (e.g. you might know
the clustering for rest of the file).

NB: It is an error to put more than one cluster-only or reset in a constraint file.

Chapter 3: Running wed 21

® reset

This is similar to cluster-only but in addition, the clustering of the sequences in this
list is reset to the default clustering (i.e. each sequence in the list is put in its own
cluster).

This is used where you are given a clustering file as input, but while you are gener-
ally happy with the clustering given for some sequences, you would like others to be
reclustered. The implication is that those sequences in the reset list

— will be clustered using d2 into one or more clusters;

— wed will not attempt to cluster them with any of the other sequences

3.10 Output

All output goes to standard output. Look at the arguments section to decide the format of
the output. Note if you don’t have any format arguments, nothing will get printed, which
will be a waste.

Format of the Compressed Cluster Table

A convenient way (for humans and probably for many programs) to show the output of the
clustering process is to use the --show_clusters option. The format of the compressed
cluster table is very simple. Each cluster appears on a line by itself. The cluster is given
by listing the indices of the sequences that make up the cluster. The indices are separated
by a space, and the last sequence in the cluster is followed by a full stop ‘.’

01 3.
2.

o O b

7.
8 9.
10.

Format of Extended Cluster Table

When the code --ext_show option is chosen, the clustering is given in table format. The
columns of the table are as follows:

e the sequence identifier (note that the sequences are numbered from 0, in the order that
they appear in the input file);

e cluster number: in each cluster, one sequence is chosen as the representative of the
cluster and its index is used for the cluster. You can identify the roots because their
indices are the same as their cluster numbers.

e link: the number of another sequence in the cluster. It is guaranteed that if you start
at the root, or representative sequence in the cluster, you can traverse the entire cluster
using the link field. It is not guaranteed that two adjacent nodes are within the d2
threshold.

e orient: the orientation of that witness (positive or RC) with respect to the root or
representative sequence in the cluster.

e witness: the number of another sequence in the cluster which is within the d2 threshold
of that sequence. This may or not be the same as the link field. Note that the value of

Chapter 3: Running wed 22

the link field is an artifact, merely a convenient way in which can list all the sequences
in one cluster, whereas the witness field tells us about two sequences that do overlap.

The orient field requires a little more explanation. It gives the orientation of the sequence
with respect to the root of its cluster. Formally, this is described as follows. Let x and
y be two sequences in a cluster. While they may not overlap, we know that there is an
ordered list or path of sequences x = x¢,x1,...,%, 1,2, = y such that for each i either
d*(x;, wi11) < 0 (positive match) or d?(z,re(z;,1)) < 0 (reverse-complement match), where
0 is the threshold. In particular for every sequence there is such a path from the root of the
cluster to that sequence. In a path from the root to a sequence x, we compute the number
of times the match is a positive one, and the number of times it is a reverse-complement
one. The orient field is 1 if the number of reverse-complement matches is even, and —1 if
the number is odd.

In principle it is possible for there to be two paths from the root to a sequence which
would yield different orient values. First, this is unlikely to happen. Second, all the orient
field is saying is that such an orientation of the sequence is legitimate. The fact that other
orientation is also legitimate does not affect the correctness of the result.

The Dump option
Usage: wcd -d dump_file seq_file

When used with this option, wed will open the given dump file for writing and then perform
clustering. Whenever it finds two sequences that should be clustered it writes the match
to the dump file: the output are the indices of the two sequences, and a 1 (if the there is a
positive match) or -1 (if there is an RC match).

This was introduced into wed to support our simplistic parallelisation (see the paralleli-
sation section in the technical manual).

3.11 Auxiliary programs

A number of auxiliary programs come with the wed distribution.
e rindex.py

This Python program takes two arguments, the names of two files each containing
(compact) clusterings. It computes the sensitivity, specificity, Jaccard index, Rand
index and correlation coefficient between the two clusterings.

If you use the —index rand option only the Rand index is shown. If you use the —index
jaccard optio, only the Jaccard index is shown.

If you use the —diff n option, the indices above are not printed but the mismatches
between the two clusterings are shown. First the pairs that are clustered by the first
cluster but not the second are shown, and then the ones clustered by the second but not
the first. If n==1, then all such pairs are shown; otherwise only the pairs that belong
to clusters with n or fewer sequences are shown. This is helpful to explore differences
in clusterings.

e ext2comp.pl

This Perl program converts the extended cluster table format to the compressed table
format.

Chapter 3: Running wed 23

comp2ext.pl

This Perl program converts the compressed table format to the extended table format.
Since all the information of the extended table is not in the compressed format, you
will find Os in the orient column and —1 in the witness field.

For both programs, input and output are standard input and output. So you would probably
run the programs thus

./ext2comp.pl < cluster.ext > cluster.com
./comp2ext.pl < cluster.com > cluster.ext

fasta2sary.py

This takes as input a FASTA file and produces the file in a format suitable to produce
a suffix array. It can do simple clean up as well.

python fastaZsary.py -x -d 11 myfile.fasta -o myfile.fasta.nlc

Note the convention that should be used. The output file must be the same as the
input file with .nlc appended.

analysecluster.py

Takes as input a clt file and produces a histogram of the cluster tables. If you use the
-t N option, instead of the histograms any clusters with more than N sequences are
output.

combine.c

This takes as input a list of names of dump files, reads in each dump file in turn, and
constructs the clustering from that. To make the executable, say make combine.

In addition to these programs, there is a shell script wed_wrapper.sh that allows wcd
to be used as a replacement for d2_cluster in the stackPACK analysis pipeline.

3.12 Running wcd in parallel

wcd has support for both shared and distributed memory parallelisation. There are, how-
ever, major restrictions should you use these options. In version 0.3.0, the wcd options
for merging, reclustering, dealing with constraints etc, are NOT supported when you use
the parallel options. It is my intention that future versions will fix these problems. The
following options are not supported if you use the parallel options.

suffix-last based clustering

—show_seq, —show_rc_seq

-E, —compare: show seqs, number common words, and d2scores
-e, —abbrev_compare: show min of d2scores (pos + rc)

-p, —pairwise: show pairwise d2 scores of all windows
—cluster_compare,-D] compare two clusters

—merge,-m: merge two clusterings

—add,-a

—recluster,-r

Chapter 3: Running wed 24

3.12.1 Shared Memory Parallelisation

If you are running wcd on a shared memory processor with multiple threads, the ——num_
threads or -N option can be used to specify how many threads should be used. If there’s
a close match to the number of CPUs that are available and unloaded, you should see a
performance improvement though the curren version is not very scalable.

3.12.2 MPI Parallelisation

By enabling MPI support when installing, wed can be used in a cluster of workstations. A
description of MPT is beyond the scope of this document. Use mpirun to run wed (which
takes the normal parameters). This code has been tested using LAMMPI (RedHat, Suse,
MacOS X), MPICH (Ubuntu) and MVAPICH (Suse).

For example, using LAMMPI the lamboot command specifies what processors are avail-
abe (the list is given in the hosts file — in its simplest form a list of the machines or their
IP addressed). The mpirun command is then used to run wed. A simple example follows.

lamboot hosts

mpirun -np 4 wcd -c sample.fas

This will run wed on 4 different processors (these procesors may be real or virtual, depending
on what’s available on the machines specified by the hosts file). When wcd runs like this
with mutiplie procesors available, one version of wcd runs as the master, and the rest as
slaves. The sequence input file must be available on the master node, but need not be on
the others.

The master process does not do any clustering itself, but merely coordinates the clus-
tering process. In the above example, this means you would be running a master and three
slaves and so could expect a 3-fold improvement in performance at best. The computational
load on the master is fairly small and so it is safe (memory being available) to schedule
both a master and a slave on same processor.

In future versions of wed, the behaviour is likely to change so that the master does do
clustering (to make it more memory effective).

NOTE: When you install wed you can enable both Pthreads and MPI so that the
exectable can do both. BUT: Do NOT try to use the Pthreads and MPI at the same time
(this will be something that goes into a later version of wcd).

Chapter 4: wcd inside stackPACK 25

4 wcd inside stackPACK

This chapter written by Peter van Heusden
Electric Genetics’ stackPACK is a widely-used software suite used for expression variance
analysis and transcript reconstruction.

By default, stackPACK uses d2_cluster as the clustering tool in its analysis pipeline.
To incorporate wed into stackPACK follow these steps: \

1. Install wed as described in See Chapter 2 [Installing wed], page 5. If you wish to use wed
from the stackPACK web user interface, you need to ensure that wed, wed_wrapper. sh
and comp2ext.pl are runnable by the web server user.

2. Edit the ‘/etc/stackpack’ file. Find the section labelled [d2_cluster| and changed the
line reading executable= to refer to the location of the wed_wrapper.sh script.

Please note that at present, you cannot do ’add’ clustering in stackPACK using wcd.

Chapter 5: Technical manual 26

5 Technical manual
Hopefully this will fill out a bit and become a little more coherent.

5.1 Program structure
Originally wed was intended to be one small program and so would fit into one file. However,
it grew and we needed to break up the program. The main files are

e wcd.h: This contains the critical type definitions of the program.

e wcd.c: This is the main program. It contains some utility and auxiliary code, processes
all the command-line arguments and then calls the right routines. The key function in
this code is the docluster code. This does the pair-wise comparison of the sequences
and where the comparison falls below the thresh-hold merges the clusters, calling the
appropriate find-union data structures.

e ed.c: this contains the routiness for computing the edit distance.
e d2.c: this contains the routines for computing the d2 score.

e common.c: this contains code and declaration for manipulating words and sequences

5.2 Data structures

The key data structure used is a find-union data structure. This discussion assumes that
you know how that works — look in a standard algorithms text like Cormen, Leieserson
and Rivest if you don’t.

All the sequences in one cluster will belong at the end to the same tree in a find-union
forest. Each sequence will point to the root of the tree.

To represent sequences we use an array of following structs

typedef struct SeqStruct {

seqType seq; // the sequence

int len; // length

string id; // sequence id (from data file)

int cluster; // refers to index of root

int rank; // for find-union

int next; // for find-union: next in linked list of cluster
int last; // for find-union: last ditto

int match; // index of another seq for which a match was made
short orient; // pos or rc for that match

int flag; // flags for fix, reset etc

} SeqStruct;

typedef SeqStruct * SeqPtr;

SeqPtr seq;

The key variable is seq which is declared globally and statically. The main function opens
up the data file(s) and computes the number of sequences in the file. Memory is then

Chapter 5: Technical manual 27

allocated for seq which is then treated as an array thereafter. The values are actually given
to the individual array elements in the function read_sequences.

The fields of the struct are:
e seq: the sequence itself: we store the sequences compactly — see below.
e len: the length of the sequence
e id: the sequence ID — this comes from the data file (the string to the right of the ’>’.

e cluster: This is the index of the representative sequence for the cluster to which a
sequence belongs. This is initialised so that each sequence is the root of its own cluster.

e rank: this is the rank used in the rank-heuristic of the find-union algorithm. Roughly
it describes how many sequences are in the tree rooted at this sequence. This is only
valid for sequences that are the root of the cluster.

e next, last. These are not standard f-u fields. However, we want to not only know which
sequence belongs to which cluster but to be able to print out the clusters efficiently.
Thus, besides keeping the fields needed for the f-u structure, we also keep a linked list
of all sequences in the cluster. next points to the next sequence in the list. The root
will always be the first element in the linked list and for the root, the last field will
point to the last sequence in the list. The make_union function updates these values.

e match is an index of an arbitrary other sequence in the cluster for which there is an
overlap.

e orient: orientation of the match (-1 or 1). Initially this is set to 1, since each sequence
starts being the root of its own cluster. The following algorithm is used to update it.
Suppose we find a match between a sequences 7 and j. We consider the orientations of
1 and j with respect to their current roots:

— If the match was positive, then if the orientation of 7 and j to their respective roots
is the same, then we know that if we take the union of the two clusters then the
orientation of the elements of the two clusters are consistent and no changes need
to be made.

However, if the orientations of ¢ and j to their respective roots are different, then
we know that the orientation of the clusters is not consistent. Therefore, we must
invert the orientations all the sequences in one of the two clusters before merging.
The choice of cluster is arbitrary but we choose the one that will become the ‘child’
cluster.

— If the match was a reverse-complement match, the situation is the reverse of the
above case. If the orientations of ¢ and j are the same, then we know the orien-
tations of the two clusters is inconsistent, and so change the orientations of the
sequences in one of the two clusters.

Storage of sequences.

Different versions of this program have taken different approaches to the storage of se-
quences. Initially, I went for one base per byte. Then, I went for four bases per byte. The
reason for this (explained below is to save memory). However, this does make the code
more complicated and cause recomputation as we need to extract out information. Then
I went to a redundant representation of the data — each word being stored in one machine
word. However, this was too memory intensive for large data sets so I went back to the
compact representation

Chapter 5: Technical manual 28

The data is stored in compressed form. The sequences are read in in ASCII format,
one base per byte. However, we only need two bits to represent the four bases, and so we
compress the data storing four bases per byte. There is a little complexity in this — the
macros GETWORD and so on look like witchcraft and some performance penalty in time,
but if we have 1M ESTs then it may make a few 100M of memory difference which may be
useful.

A down side of the compressed format is that we can only treat Ns that are in the data
as some arbitrary symbol. It would be better to ignore all words that contain N, but there
is no way of knowing this in the compressed format.

The key data structures are shown below. Each sequence is an array of integers: the
definition of seqElt is key. Have a look at the wed code to see the current version (this
may change). In 0.1.8 at least we used int32_t. If you want to change this to some other
type, change the definition of seqElt and change the definition of SEQELTWIDTH to reflect
this change (i.e. the bit width).

typedef int32_t seqElt;

typedef seqElt * seqType;

#define SEQELTWIDTH 32

#define BASESPERELT (SEQELTWIDTH/2)

In read_sequences each sequence is read into memory in turn. Once we know the length
of the sequence, we divide through by BASESPERELT to compute the length of the needed
array and allocate memory accordingly.

The maximum EST length is set by a macro constant definition MAX_SEQUENCE_LENGTH.Q
It’s currently 64K, but can be changed to any reasonable value. The only real limitation is
that the next_seq variable in read_sequences is declared in the function and there might
be a limitation on how the memory allocated on the stack can be on some machines. In
version 0.1.8 for example this would mean that the the actual limit on sequence length is
64K*8 which is probably sufficient. If you run into this problem you may consider moving
the declaration globally.

5.3 The algorithms

5.3.1 Heuristic

Since d2 is an expensive test, a heuristic test is done before d2 is called. This is based
upon the idea that for a d2 score to be under the threshold, the two sequences must share
a number of non-overlapping common words.

I have not had time to work on this analytically though I think it can be shown. However,
I have done some empirical work which showed that if you graph d2 score (y axis) against
common word score (x axis) that all the data points lie above the line d2 = -12.5cw + 150.
This means that at a d2 threshold of 40, all matches have over 8 common words. Thus the
default set of 5 is very conservative.

The heuristic is a little more complicated than this. If we are comparing sequences u
and v, then

e First we build a table of all words in u.

(Note that this is not particularly expensive to do. When we do the clustering we have
a double loop

Chapter 5: Technical manual 29

for(i=0; i<n; i++) {
for(j=i+1; j<mn; j++) {
compare i and j
the building of the table is done in the outer loop, outside of the inner loop and so the
cost is negligible when amortised over all values.)

e Then if the threshold for the number of commone words is at least 5, we sample the
words in v ; If there are fewer than 2 matches, we report failure.

e If there are more than 2 matches, we then see how many non-overlapping words in v
appear in u. If they are above the threshold we report success

5.3.2 The parameters of do_cluster, and implementing merging
and add

Normally, to do a clustering we need to compare each sequence to each other. The obvious
way of doing this is by using a double loop:
for(i=0; i<num_seqs; i++) {
for(j=i+1; j<num_seqs; j++) {
blah, blah
}
}

When we do a merge, we have two separate clusterings and there is no need to compare
the sequences in the first half with each other, and the sequences in the second half with
each other but only those sequences in the first half with those in the second. Assuming
there are nl sequences in the first part, the code becomes

for(i=0; i<nl; i++) {

for(j=nl; j<num_seqs; j++) {
blah, blah
}
}

When we do an add, we have a clustering that we add sequences to. The clustered data
is in the first part and the new data is in the second. There is no need to compare the
sequences in the first half with each other. The code becomes

for(i=0; i<num_seqs; i++) {

for(j=max(nl,i+1); j<num_segs; j++) {
blah, blah
}
}

Each of these three cases can be dealt with by passing as parameters of do_cluster the
bounds of these two loops. The indices are set in the main function based on the program’s
arguments.

In addition, sometimes we only want to cluster some of the sequences. There are two
ways in which this can be done. One is to just set the ignore flag for the sequences that
should be clustered to an appropriate value. The other is to pass the do_cluster function
an array which contains the indices of those sequences to be clustered. This index array
can then be used to extract out the indices of the sequences.

Thus there are four parameters for the do_cluster function:

Chapter 5: Technical manual 30

e i_end: where the i-loop should finish looping.

e j_beg: where the j-loop should start looping

e j_end: where the j-loop should end looping

e index: an array of the indices of sequences to be clustered.

If this parameter has a NULL value, then all the sequences from 0 to i_end will be
compared to all the sequences from j_beg to j_end.

If this parameter has a non-NULL value, then all the sequences from index[0] to
index[i_end] will be compared to all the sequences from index[j_beg] to index[j_
end].

5.4 How to add distance functions

If you want to add a new distance function, say farfun, you need to implement three
functions
e farfun: this should actually implement the distance function. It need not return the
correct result: however if the distance between the two sequences is less than the
threshold then the function should return a number less than the threshold (i.e. once
you detect that the value is less than the threshold you can just return an estimate,
you don’t have to find the actual value)
e farfunpair: this should implement the distance function but should return the correct
answer.

e farfuninit: this is initialisation code that will be called when the program runs.
The code should be placed in a file called farfun.c and the prototype should be put in
farfun.h.
Then in the wed.c add to chooseFun.

In common. c, call the initialise code in initialise.

5.5 Parallelisation

This section first discusses work allocation in MPI and Pthreads and the discusses some
more primitive support that wed has for parallelisation.
Different work allocation methods are provided for MPI and Pthreads. This is to allow

for experimentation and future releases of wcd are likely to change the way in which they
do things.

5.6 Work allocation in MPI

In MPI, work allocation is done staticallly. The input file is read in and estimates are
made of the clustering costs based upon sequence length and the number of sequences. The
workload is then allocated to the slaves and the slaves are launched. This may well change
in future so if you write a script that uses this option, please check in future releses.

5.7 Work allocation using Pthreads

In Pthreads, the work allocation is done dynamically. Conceptually the work is broken up
into a d x d grid of work and the work is then allocated to slaves. As there are many more
blocks than slaves, each slave will have to ask for work many times.

Chapter 5: Technical manual 31

5.7.1 Distributed Parallelisation

wcd has a number of options to support a simple parallelisation on a local network. The
approach is very simplistic: we had a very large real job (110k mRNAs, 250M of data) that
needed to be clustered in a hurry and urgently, so we hacked an inelegant solution together.
Now that MPI support is available, these options will become less important and may be
removed in future versions of wed. (Let me know if you rely on them.)

In our labs we have about 150 machines on one NFS server. We wrote a Perl script that
lauched wcd on each of the machines, using the --range and --dump options to specify the
workload that machine had to take on and to say where the results should go.

NFS is used for communication. Each process reads in the entire sequence file — obviously
hideously expensive. To make what we did socially acceptable and to prevent our NFS server
from falling over, the Perl script that lauches the wcd processes delays for about 60s between
launches which means that it takes over 2 hours to start all the wed processes.

The auxilary program, combine can be used to read in all final dump files to produce
the overall clustering.

Chapter 6: Testing 32

6 Testing

This chapter written by Peter van Heusden

This section was written with respoect to an early version of wed 0.3. The code and
performance has changed significantly since that time.

wcd was compared against d2_cluster on a dual processor Pentium III system, with pro-
cessors running at 1GHz and 1.5Gb RAM.

The test dataset was created out of 23300 ESTs and 315 mRNAs known to be associated
with 27 genes on chromosome 22 that are known to be alternately spliced. The average
length of the mRNAs was 4923 bases and of ESTs 633 bases.

Input sequences were masked for repeats and contamination usings cross_match.

Three test runs were done, first with only ESTs, second with only mRNAs and finally
with a dataset comprising all EST's and mRNAs. Only a single CPU was used for processing,
and run times were as follows:

ESTs only: wed 1 hour 4 minutes (3870 seconds user cpu, 16 seconds system cpu) d2_
cluster 1 hour 2 minutes (3704 seconds user cpu, 14 seconds system cpu)

mRNAs only: wed 5 hours 16 minutes (19014 seconds user cpu, 24 seconds system cpu)
d2_cluster 3 minutes 20 seconds (198 seconds user cpu, 0.7 seconds system cpu)

ESTs and mRNAs combined: wcd 5 hours 22 minutes (19353 seconds user cpu, 2.23
seconds system cpu) d2_cluster 1 hours 21 minutes (4905 seconds user cpu, 1 second
system cpu)

As can be seen from these results, wed currently is significantly slower than d2_cluster
when dealing with mRNA data. wcd’s performance can be improved by increasing the
number of words that two sequences must have in common before wed will do a detailed
comparison. This parameter is set with the -H flag. The price of this increase in performance
will be decrease in sensitivity.

In terms of sensitivity, the following results show that wcd has comparable sensitivity to
d2_cluster in finding similarities between EST and mRNA sequences.

For the dataset of EST sequences, the following clusters were found: wed 125 clusters
consisting of 12520 sequences. d2_cluster 129 clusters consisting of 12690 sequences.

A detailed comparison of the clustering results shows that wcd joined together 6 clusters
into 3 in its results, whereas d2_cluster joined together 8 clusters into 2 in turn. In
the results from wed, 179 sequences were singletons that were in clusters in the d2_cluster
results, whereas in the d2_cluster results, 9 sequences were singletons that were in clusters
in the wcd results.

While these results suggest that d2_cluster is marginally more successful than wed in
assigning sequences to clusters, the difference between results is not significant (only 0.76%
of sequences were singletons in wcd results but in a cluster in d2_cluster) results.

For the dataset of mRNA sequences, the following clusters were found: wcd 26 clusters
consisting of 265 sequences. d2_cluster 26 clusters consisting of 270 sequences.

As in the EST results, d2_cluster assigned more sequences (5 or 1.58% of the dataset)
to clusters than wed did. Again, however, the results are not significantly different in terms
of sensitivity.

Chapter 6: Testing 33

For the dataset of all (EST combined with mRNA) sequences, the following clusters were
found: wecd 83 clusters consisting of 12852 sequences. d2_cluster 82 clusters consisting of
13026 sequences.

As can be seen by comparing the combined dataset to that of ESTs, the addition of
mRNAs to the dataset has the result of reducing fragmentation.

A detailed comparison of the clustering results shows that wcd joined together 4 clusters
into 2 in its results, whereas d2_cluster joined together 9 clusters into 2 in turn. In the
results from wed, 181 sequences (0.76% of the dataset) were singletons that were in clusters
in the d2_cluster results, whereas in the d2_cluster results, 7 sequences were singletons
that were in clusters in the wcd results.

Again, the results show that d2_cluster is marginally more successful at assigning
sequences to clusters than wed is, but that overall the difference in results between the two
programs is not significant.

Comment by SH

Testing of the difference in quality between the d2_cluster program and wcd is a little
tricky. In principle, it is highly unlikely there is any real difference. Also note that wed 0.4
is significantly faster than 0.3.

Two methodological points: cluster size is only a very rough measure of correctness; and
the only valid comparison is with a known correct answer.

Research we have done using different distance measures has shown that the parameters
used can be more important than which distance measures. wcd and d2_cluster have
slightly different default parameters. Changing the parameters will change the results. If
you use the right parameters, you will get good answers; if you don’t you won’t.

Moreover, changing the heuristics slightly can change the performance dramatically.
Changing some of the heuristic parameters will speed up clustering by more than a factor
of 2 with little impact of quality.

Chapter 7: Acknowledgements and copyright 34

7 Acknowledgements and copyright

7.1 Acknowledgements

wed was written after a very productive visit to the South African National Bioinformatics
Institute (SANBI). SANBI introduced me to the problem and as we needed to have a d2
clustering program for our research, I wrote one. Many people helped but thanks particu-
larly to Winston Hide for alpha and beta testing of the code as well as some very detailed
biological analysis. Peter van Heusden was responsbile for significant testing as well as
integrating into StackPack.

Ramon Nogueria was responsible for the development of the acd files and wrapper for
the EMBOSS implementation. Richard Starfield worked on the Pthreads implementation.

Zsuzsanna Liptdk, now at the University of Bielefeld introduced the maths and the
algorithms to me, and made sure I knew what I was doing. She also helped me refine the
algorithmic innovations in this version of d2 cluster and made several useful suggestions.

Anton Bergheim and Pravesh Ranchod at Wits also gave valuable feedback.

Research grants from the National Bioinformatics Network and the National Research
Foundation supported this work.

All the above helped with alpha testing.

7.2 Copyright

The program copyright details are:

(M)
Copyright (©) Scott Hazelhurst 2003-2007

School of Computer Science,

University of the Witwatersrand,

Johannesburg

Private Bag 3, 2050 Wits

South Africa

scott@cs.wits.ac.za

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public Licence as published by the Free Software Foundation; either
version 2 of the Licence, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public Licence for more details.

Version date: 20 March 2008 $Id: wcd.texi,v 0.4.5.1 2008/03/20 13:22:58
scott Exp scott $

This documentation is distributed under the GNU Free Documentation Licence.

Concept Index

Concept Index

A

auxiliary programs 8, 22

C

clone 11
cluster table................................. 21
constraint........... oL 17, 20

D

distance function choice 2, 10, 16
distance function parameters 16
Aump ... 22

E

extended format of cluster table 21

F

fasta2sary......... ... 18
format, output 21

H

heuristic........... 17, 28

I

installing.............. 5

M

METGING . ..ottt 13
MPIL ... 8, 10, 24
MPI, installation 6

35
orientation.............. 21, 27
output 16
parallelisation 10, 23, 24
Pthreads........., 24
PTHREADSo 8, 10
Pthreads, installation 6
TATIZEC v ove ettt et e 18
recluster, denovo............ 12
recluster, from a coarser cluster............... 19
reverse complement 22
shared memory processor..................... 24
SMP . 24
stackPack 25
stackPACK 8
SUffiX .o 18
suffix, using fasta2sary 23
T
testing 32
threshold............ 17

A%

window length.......... 17
word length i 17

	Description
	Clustering
	Distance functions
	The D2 distance function
	General formulation
	Windows
	References

	Edit distance

	Installing wcd
	Getting new versions of wcd
	Changes from versions 0.3.x
	Installing the distribution
	Compiling
	Method 1: using configure
	MPI Version
	Pthreads

	Method 2: Manually using make
	Trouble shooting

	EMBOSS
	Auxiliary programs

	Documentation

	Running wcd
	Summary
	Examples --- A Quick Introduction to wcd
	Basic Clustering
	More advanced clustering
	Using a clustering file
	Using a constraint file
	An example of reclustering and constraint files.

	Merging and adding

	Help
	Identifying a sequence
	Comparing two sequences
	Doing clustering
	Arguments
	Options
	Clustering based upon suffix arrays

	Clustering a range
	Refining clusters
	Merging clusters
	Adding sequences
	Reclustering

	Format of input files
	Output
	Auxiliary programs
	Running wcd in parallel
	Shared Memory Parallelisation
	MPI Parallelisation

	wcd inside stackPACK
	Technical manual
	Program structure
	Data structures
	The algorithms
	Heuristic
	The parameters of do_cluster, and implementing merging and add

	How to add distance functions
	Parallelisation
	Work allocation in MPI
	Work allocation using Pthreads
	Distributed Parallelisation

	Testing
	Comment by SH
	Acknowledgements and copyright
	Acknowledgements
	Copyright

	Concept Index

