Practical Introduction to Population Structure

Scott Hazelhurst

2014

Population Structure

Explosion of data from complete genome sequencing, GWAS, ... can be used to explore structure in the population Goals:

- Understanding population histories
- Dealing with confounding effect of population structure in GWAS
- Anomalies in the data.

Haplotype analysis

Until recently pop history done with:

- Y-chromosome data (e.g., STR)
- mt-DNA

Done at population level:

- Resolve haplotypes
- Characterise populations with haplotype composition

Am. J. Hum. Genet. 66:674-686, 2000

< 日 > < 同 > < 三 > < 三 >

Y Chromosomes Traveling South: The Cohen Modal Haplotype and the Origins of the Lemba—the "Black Jews of Southern Africa"

Mark G. Thomas,¹ Tudor Parfitt,³ Deborah A. Weiss,⁴ Karl Skorecki,⁵ James F. Wilson,² Magdel le Roux,⁶ Neil Bradman,⁷ and David B. Goldstein²

¹The Center for Genetic Anthropology, Departments of Biology and Anthropology, and ²Galton Laboratory, Department of Biology, University College London, and ³School of Oriental and African Studies, University of London, ¹Lopartment of Anthropology, University of California, Davis; ³Bruce Rappaport Faculty of Medicine and Research Institute, Technion and Rambam Medical Center, Haifa, Israel; ¹Department of Old Testament, University of South Africa, Pretoria; and ¹Department of Zoology, University of Oxford, Oxford

MOLECULAR GENETICS

Lemba origins revisited: Tracing the ancestry of Y chromosomes in South African and Zimbabwean Lemba

H Soodyall, BSc (Hons), MSc, PhD

Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa

Corresponding author: H Soodyall (hxsood@global.co.za)

Background. Previous historical, anthropological and genetic data provided overwhelming support for the Semitic origins of the Lemba, a Bantu-speaking people in southern Africa.

Objective. To revisit the question concerning genetic affinities between the Lemba and Jews.

Methods. Y-chromosome variation was examined in two Lemba groups: one from South Africa (SA) and, for the first time, a group from Zimbabwe (Remba), to re-evaluate the previously reported Jewish link.

Results. A sample of 261 males (76 Lemba, 54 Remba, 43 Venda and 88 SA Jews) was initially analysed for 16 bi-allelic and 6 short tandem repeats (STRs) that resulted in the resolution of 102 STR haplotypes distributed across 13 haplogroups. The non-African component in the Lemba and Remba was estimated to be 73.7% and 79.6%, respectively. In addition, a subset of 91 individuals (35 Lemba, 24 Remba, 32 SA Jews) with haplogroup J were resolved further using 6 additional bi-allelic markers and 12 STRs to screen for the *extended* Cohen modal haplotype (CMH). Although 24 individuals (10 Lemba and 14 SA Jews) were identified as having the original CMH (six STRs), only one SA Jew harboured the *extended* CMH.

Conclusions. While it was not possible to trace unequivocally the origins of the non-African Y chromosomes in the Lemba and Remba, this study does not support the earlier claims of their Jewish genetic heritage.

< 一型

< ≣⇒

æ

æ

<ロ> <同> <同> < 同> < 同>

FGS & SNP chip data

Availability of SNP-chip data and complete genome sequence data makes much richer data available

- Explore all lineages of individuals
- Complexities
 - Half of genetic information "lost" in each generation
 - Recombination through meiois (\sim 35 breakpoints per generation)
- Statistical in nature

Complements mt and Y chromosome data

Two basic approaches

- Principal component analysis (PCA) : eigenstrat, SNPRelat
- Structure based : structure, admixture

Principal Component Analysis

PCA is general technique for dealing with high-dimensional data which is

- Difficult to visualise
- Not all dimensions in the data same importance, many correlated

PCA does dimension reduction – project data into lower-dimension space

- axes independent to each other
- can estimate importance of axes

Genotype to population structure

Each individual in study has a vector of genotype information

•
$$s_i = \langle g_{i,0}, g_{i,1}, \ldots, g_{i,n-1} \rangle$$

Compute *distance* between two individuals, s_i , s_j

• Common: sum of differences between vectors (0, 1, 2 per position).

From pairwise distances:

- Matrix D
- D[i, j] is normalised distance between s₁, s_j
- Implicitly embeds the individuals in a high dimensional space
 Goal is to cluster individuals that are close to each other

PO: AA AC AT AA P1: TT AA TT AA P2: AA AC TT TT

æ

< E.

PO: AA AC AT AA P1: TT AA TT AA P2: AA AC TT TT

Distance:

- P0, P1: 4
- P0, P2: 3
- P1, P2: 5

PO: AA AC AT AA P1: TT AA TT AA P2: AA AC TT TT

Distance:

P2 •

P0 •

- P0, P1: 4
- P0, P2: 3

• P1, P2: 5

•P1

э

PO: AA AC AT AA P1: TT AA TT AA P2: AA AC TT TT P3: AT CC TT AA

Distance:

	P0	P1	P2	P3
P0	0	4	3	3
P1		0	5	3
P2			0	4

э

Can only be embedded in 3D space

P0: (0,0,0) P1: (4,0,0) P2: (0,3,0) P3=(2,0.33,2.21)

From distance matrix draw individuals in k-dimensional space.

Clusters: individuals closer to each other than others.

From distance matrix draw individuals in k-dimensional space.

May see outliers, admixed individuals

From distance matrix draw individuals in *k*-dimensional space.

Position of individuals from genotype information.

From distance matrix draw individuals in *k*-dimensional space.

May have external info – e.g., case/control, population group – use colours.

> Interested in interplay between internal, external evidence

Problems...

- Extremely high dimensional
- Some dimensions correlated, not useful

P0 P1 P2 P0 0 2 4 • • • P1 0 2 P0 P1 P2

æ

★ 문 ► ★ 문 ►

문 🛌 문

æ

∃ >

3

Principal Component Analysis – PCA

Transform data so that it is embedded in another space.

- Preserve relative distance between individuals.
- Number of dimensions/components are reduced.
- Components independent-ish of each other.
- Ordered by importance.

Common method is *eigendecomposition* – takes distance matrix and produces:

- Eigenvalues: λ_i is relative importance of dimension i
- Eigenvectors: **v**_i coordinates of each individual in the *i*-th dimension

Coordinate of indvidual j is

$$(v_1[j], v_2[j], v_3[j], \ldots)$$

NB: although fewer dimensions, still many dimensions.

How many dimensions?

Use 2 or 3 at a time for display – but may need to look at/analyse several

Top PCs are most important, lower ones are noise. Where cut-off?

- If use too few, miss real signal structure, and may get false signals in GWAS.
- if use too many, may reduce power because of noise in data

Choice of number of PCs by eyeball method, or using Tracy-Widom statistic, Velicer's MAP test, ANOVA test.

Guidelines for PCA

- Most studies autosomal SNPs
- The more SNPs the better (Eigenstrat says \geq 100k), but YMMV.
- SNPs should not be in LD with each other prune first.
- Skew group sizes may skew results try to have balanced groups sizes.
- Interpret distances with caution.
- Can you explain significant PCs: true biology, or indication of problem

SNPRelate – alternative to eigenstrat

- R package
 - Faster than eigenstrat at least version \leq 4
 - Suggestion: if you know R or have a very big set, use SNPRelate Otherwise eigenstrat

Eigenstrat

Powerful program for doing PCA – lots of features.

э

æ

<ロ> <同> <同> < 同> < 同>

#eigvals: 1.499 1.107 1.096 1.090 081 1.079 1.075 1.07 CH18526:NA18526 0.109 -0.198 -0.012 ... 0.1007 -0.1290 -0.187 CH18524:NA18524 0.107 0.091 0.228 ... -0.0330 -0.2377 0.104 CH18529:NA18529 0.074 0.033 0.016 ... -0.1024 - 0.0767 - 0.019CH18558:NA18558 0.104 0.155 0.244 ... -0.0530 - 0.10450.290 CH18532:NA18532 0.106 -0.098 -0.017 ... 0.0290 -0.1142 0.072CH18561:NA18561 0.106 0.268 0.072 ... -0.3031 - 0.0435 - 0.236CH18562:NA18562 0.099 -0.004 -0.055 ... -0.11200.0058 - 0.075CH18537:NA18537 0.113 -0.037 0.163 ... -0.1631 - 0.25440.143

. . .

Calling EIGENSTRAT

Call smartpca directly.

• Most powerful. Takes a parameter file as input. Complex as eigenstrat takes different formats.

Calling EIGENSTRAT

Call smartpca.perl: much easier, but also lots of options. Creates *par* file and calls smartpca.

smartpca.perl -i hm3-prune.bed

- -a hm3-prune.bim -b hm3-prune.fam
- -p hm3-prune.pca
- -e hm3-prune.eval
- -o hm3-prune.pca
- -q NO -1 hm3-prune.log

Script *runpca* • runpca hm3-prune

#! /bin/bash

æ

Interpreting results

Look at the log and standard out/error \ldots here are some

 Average divergence between populations:

 CEU
 YRI MbutiPygmies
 Han
 San point

 CEU
 1.165
 1.485
 1.499
 1.316
 1.531
 17

 YRI
 1.485
 1.093
 1.160
 1.478
 1.208
 9

 MbutiPygmies
 1.499
 1.160
 0.875
 1.483
 1.09

 Han
 1.316
 1.478
 1.483
 0.987
 1.510
 19

 San
 1.531
 1.208
 1.059
 1.510
 0.880
 2

eigenvector 1:means MbutiPygmies -0.179 San -0.150 YRI -0.121 CEU 0.078 Han 0.126

æ

Anova statistics for population differences along each eigenvector:

> p-value 0 +++ Han maxy: 0 +++ 0 +++ 0 +++ 0 +++ 0 +++

0.

- - 0 +++

伺 ト く ヨ ト く ヨ ト

э

eigenvector_1_overall_ MbutiPygmies minv: -0.179eigenvector_1_CEU_YRI_ eigenvector_1_CEU_MbutiPygmies_ eigenvector_1_CEU_Han_ 1.11022e-16 +++ eigenvector_1_CEU_San_ eigenvector_1_YRI_MbutiPygmies_ eigenvector_1_YRI_Han_ eigenvector_1_YRI_San_ 8.98579e-05 *** eigenvector_1_MbutiPygmies_Han_ 1.11022e-16 +++ eigenvector_1_MbutiPygmies_San_ 1.75826e-06 *** eigenvector_1_Han_San_

eigenvector 5:me	ans						
San	-0.004						
CEU	-0.001						
Han	0.000						
MbutiPygmies	0.001						
YRI	0.002						
eigenvector_5_overall_ 0.999997							
San	minv:	-0.004	YRI ma	axv:	0.002		
eigenvector_5_CEU_YRI_ 0.973486							
eigenvector_5_CEU_MbutiPygmies_ 0.979764							
eige	nvector_5	_CEU_Han_	(0.978691			
eige	nvector_5	_CEU_San_	(0.987923			

¥ S

æ

Tracy-Widom statistics

Used to assess if there is significant structure in each PC

Use the twstats program (also need twtable file)

twstats -t twtable -i sample.eval -o sample.tv yields

#N eigenval difference twstat p-value effect 1 8.977 NA 22.25 2.58e-32 46.592 2 4.006 -4.971 37.21 1.07e-67 206.977 3 2.057 -1.948 42.68 9.94e-83 894.681 4 1.118 -0.939 7.11 1.00e-07 2330.993 5 1.013 -0.104 -1.07 0.438162 2551.689

smartpca notes

- Can support quantitative traits.
- smartpca does outlier detection: by default remove individuals >6 standard deviations from 0 on any of the top 10 PCs.
- algorithm is quadratic in number of samples \times number of SNPs (in space and time)
- lots of different options

CLI programs

Can use gnuplot or R directly. Wrapper programs

- ploteig
 Comes with the smartpca program
- evec2gp http://www.bioinf.wits.ac.za/ software/poputils

Interactive program for producing PCA plots

- Can choose which PCs (2D or 3D)
- Change colours
- Identify, hide individuals
- Control display

Structure based approaches

Statistical models.

- Assume *K* underlying groups
- Unknown: Population k contributes a fraction q_{ik} of individual i's genome.
- Unknown: Allele 1 at SNP *j* has frequency *f*_{kj} in population *k*.

Start off knowing only knowing *Obs*: overall frequencies of alleles and each individuals' state

For person *i* at SNP *j*, consider probability for that person that they have alleles 1/1, 1/2 or 2/2

•
$$Pr(1/1) = [\sum_{k} q_{ik} f_{kj}]^2$$

• $Pr(1/2) = 2[\sum_{k} q_{ik} f_{kj}][\sum_{k} q_{ik}(1 - f_{kj})]$
• $Pr(2/2) = [\sum_{k} q_{ik}(1 - f_{kj})]^2$

Derive probabilistic objective function:

 $\mathcal{L}(\langle q_{ik}, f_{ki} \rangle | Obs)$

Goal is to maximise:

- probabilistic
- structure, admixture are programs that compute this.

We use admixture:

• Given value *K*, probabilistically compute populations tructure

```
0.35 0.65 0.00
0.37 0.60 0.03
0.4 0.43 0.17
0.01 0.05 0.94
0.15 0.51 0.34
```


물 🛌 🗄

• Try different values of K.

Population structure of various African groups

na lla	an palanan sa manana kan	a Baran katan kalender de Mania dira		ويور ويتركبونهم الروار والطال
1.411	and a second second			Hills and American and
		a sa	ana na kana ka sa alika sa ka	hin and the set of a set
111	an dha lan da an da a An da an d	a an		different and the state of the sector
M	Proding (1997) and a state of the	et a a gla sta ha, start tild ha somt beske dad	aan ad aan ah	iller and east a new
SAN	SABS	LWK	YRI	мкк
				¥

æ

Choice of K

Important to have reasonable choice of K – population structure, history important to understand.

- Eyeball method
- Use PCA but number ancestral pops not same as number clusters.
- Cross-validation.

ADMIXTURE program: Alexander *et al.*

Fast, flexible program.

Basic form of operation:

admixture data.bed 5

Find admixture on data set for K = 5.

Scott Hazelhurst

Produces:

- data.5.Q Estimate of ancestry of each individual – one row per individual
- data.5.P

Estimate of ancestry of each SNP – one per SNP

```
-j: multi-core option
```

```
admixture -j3 data.bed 5
```

Random seed

admixture -s 871 data.bed 5 admixture -s time data.bed 5 admixture -s \$\$ data.bed 5 Cross-validation --cv for a given K, compute Q, P.

- Then, repeat analysis several times, each time removing a proportion of the SNPs.
- Compute difference between results from partial and full analysis
- Get error estimate

Then repeat for different values of K. Good K are those with lowest error estimate.

CLUMPP

Typically should run many times to get range of possibilities

- CLUMPP [Jakobsson and Rosenberg, 2006] averages, label switches
- 0.35 0.65 0.00
- 0.37 0.60 0.03
- 0.4 0.43 0.17
- 0.01 0.05 0.94
- 0.15 0.51 0.34

- 0.60 0.07 0.33
- 0.60 0.05 0.35
- 0.47 0.13 0.40
- 0.15 0.80 0.05
- 0.52 0.32 0.16

Solving label switching

- Given Q₁, Q₂ and a mapping/alignment p between columns of Q_i, can compute H – error estimate.
- Generalise to r matrices
- Want to find alignment that minimise the error.

Three basic algorithms:

- FullSearch
- Greedy: Iterative on runs
- LargeKGreedy: Simplified iterative on runs, columns

Format of *indfile*

Concatenation of multiple Q files with some prefix

1 1 (1) 1 : 0.916977 0.038781 0.044243 2 2 (2) 1 : 0.930008 0.049758 0.020234 3 3 (3) 1 : 0.982630 0.000010 0.017360 4 4 (4) 1 : 0.893398 0.070601 0.036001 5 5 (5) 1 : 0.958184 0.030509 0.011307 6 6 (6) 1 : 0.972452 0.021890 0.005658

Format of paramfile

CLUMPP expects a file called *paramfile* as input in directory

DATATYPE 0 # 0 for Q file 1 for P file INDFILE allh.indfile # data file OUTFILE allh.outfile # output MISCFILE allh.miscfile # log KЗ # num clusters C 639 # num people R 100 # num runs M 2 # 1=FullSearch, 2=Greedy, 3=LargeKGreedy) WΟ # weight by size of pop (0=no, 1=tes) Use existing *paramfile* as template

Practical suggestion for using CLUMPP

Create directory for your plink data, e.g. *projectA* contains: uab.bed, uab.bim, uab.fam

Decide number of runs you want R, and which K.

- Make directories 1,...,R
- Inside each directory, run admixture for each K value
- e.g., projectA/12 will contain *uab.Q.3*, *uab.Q.4*,
- Run *cdg.py* script to combine results.

```
runadmix.sh script
#!/bin/bash
DATA=hapmap1.bed
KMTN=3
KMAX=5
R = 10
for i in 'seq $R'; do
    mkdir -p $i
    cd $i
    for k in 'seq $KMIN $KMAX'; do
       admixture ../$DATA $k -j3
    done
    cd ..
done
```

- glob: a Un*x glob which specifies the directories where the Q files can be found (NB: the /).
- output: name of output indfile
- NB: file *paramfile* is created, over-writing existing file

Edit the paramfile as needed (e.g., change method)

Genesis program can

- display single, multiple structure charts
- interactive
- change colours, orders, headings

Found at

http://www.bioinf.wits.ac.za/software/

Distruct

Rosenberg [2004]

• CLUMPP/Admixture/Structure provide "objective" evidence of admixture of each individual from *K* unknown ancestral groups.

• We know ascribed membership of groups Distruct displays this appropriately. http://www.stanford.edu/group/ rosenberglab/distructDownload.html